Code: EC3T6, EE3T6

II B.Tech - I Semester - Regular/Supplementary Examinations November 2019

SWITCHING THEORY AND LOGIC DESIGN

(Common for ECE, EEE)
Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks
$11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) What is the largest binary number that can be expressed with
i) 14-bits
ii) 10-bits
b) Find 16's compliment of BABA.
c) Reduce the Boolean function $\left(\mathrm{A}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{C}^{\prime}\right)(\mathrm{A}+\mathrm{B}+\mathrm{CD})$ to four literals.
d) Draw the logic diagram to implement the function $\mathrm{Y}=\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)\left(\mathrm{C}+\mathrm{D}^{\prime}\right)$
e) Distinguish between combinational and sequential switching circuits.
f) Draw the logic diagram of four-to-one line multiplexer.
g) Draw the logic diagram of 4×2 encoder.
h) Convert JK flip- flop to D flip- flop.
i) Draw the logic diagram of a mod-7 asynchronous counter using JK flip-flops.
j) What are the various types of shift registers?
k) Compare the Moore and Mealy Machines.

PART - B

Answer any $\boldsymbol{T H R E E}$ questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Convert the following to Decimal and then to Binary.
i) $(3214)_{16}$
ii) $(2716)_{8}$
8 M
b) Explain about different Error Correction and Detection
codes. 8 M
3. a) Express the following function as a sum of min terms and as a product of max terms.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{B}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{D}+\mathrm{BD}
$$

b) Simplify the following Boolean function together with don't care conditions d, and implement it using NAND gates.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,6,8,13,14)+\sum \mathrm{d}(2,4,10)
$$

4. a) Design a 4 bit adder-subtractor and explain its operation.
b) Draw a PLA circuit to implement the functions.

$$
\begin{aligned}
& \mathrm{F}_{1}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC} \mathrm{C}^{\prime} \\
& \mathrm{F}_{2}=(\mathrm{AC}+\mathrm{AB}+\mathrm{BC})^{\prime}
\end{aligned}
$$

5. a) Design a 4 bit synchronous counter using JK Flip-flops and explain its operation.
b) Draw the logic diagram of a 4-bit up-down ripple counter and explain its operation.
6. a) A sequential circuit has two JK flip-flops A and B, two inputs x and y, and one output z. The flip - flop input equations and circuit output equation are

$$
\begin{array}{ll}
\mathrm{J}_{\mathrm{A}}=\mathrm{Bx}^{\prime}+\mathrm{B}^{\prime} y^{\prime} & \mathrm{K}_{\mathrm{A}}=\mathrm{B}^{\prime} \mathrm{xy}^{\prime} \\
\mathrm{J}_{\mathrm{B}}=\mathrm{A}^{\prime} \mathrm{x} & \mathrm{~K}_{\mathrm{B}}=\mathrm{A}+\mathrm{xy}^{\prime} \\
\mathrm{z}=\mathrm{Ax}^{\prime} \mathrm{y}^{\prime}+\mathrm{Bx}^{\prime} \mathrm{y}^{\prime} &
\end{array}
$$

i) Draw the logic diagram of the circuit.
ii) Tabulate the state table
iii) Derive the state equations for A and B .
b) Reduce the number of states in the following state diagram and design the circuit using T Flip-flops.

